Blogia
Vanity Fea

Aritmética, población y energía

Aritmética, población y energía


Puede verse en YouTube una importante conferencia de Albert Bartlett, en la Universidad de Colorado (2002), sobre la relación aritmética entre el consumo de energía y el aumento de la población. Viene a ser una actualización de los puntos básicos del razonamiento malthusiano básico: el consumo crece a un ritmo mayor que la producción de recursos. Esto es algo inevitable, y Bartlett pone el énfasis en la necesidad de detener el crecimiento de la población. Quizá se entendiese todavía mejor diciendo que lo que hay que reducir es el consumo de energía y de recursos—pero Barlett quiere insistir en que no es creíble una reducción del consumo que no suponga previamente una reducción de la población.

A Malthus se le ha olvidado, en términos generales—como si sus fatídicas profecías no se hubiesen cumplido. Pero no han faltado tampoco predicciones cumplidas: grandes guerras y exterminios, epidemias masivas, control de la natalidad, desarrollo de la homosexualidad, descenso de la natalidad en los países avanzados. Digamos que el impacto las predicciones de Malthus se ha difuminado por el empuje que dio a nuestro crecimiento, en Occidente y en todo el mundo, el consumo de combustibles fósiles—sobre todo la era del carbón, y ahora la del petróleo que pronto toca a su fin. Nos hemos acostumbrado a hacer todo quemando petróleo, y a vivir en la abundancia que da la energía fácil, con la ilusión de que durará para siempre. Mientras, hemos creado una cultura del crecimiento constante hacia el infinito.  Mi padre decía que el capitalismo era un sistema que había funcionado muy bien hasta ahora, pero que estaba basado en una presuposición errónea: que la tierra es plana, e infinita. El fin de la era del petróleo va a ser especialmente violento y conflictivo. La tierra es redonda, y el consumo de recursos al final se encuentra consigo mismo, con tierra quemada. La conferencia de Bartlett es un serio aviso al respecto.  Merece la pena seguirla y tomar buena nota de lo que dice; es, además, una auténtica lección magistral. Iré traduciéndola en la medida de mis posibilidades.


La aritmética, la población, y la energía
Conferencia en la Universidad de Colorado, Boulder (2002)
Dr. Albert A. Bartlett
Profesor emérito
Departamento de Física
Universidad de Colorado, Boulder

Es un auténtico placer estar aquí con ustedes y tener la oportunidad de hablar de algunos de los problemas a los que nos enfrentamos. Bien, algunos de estos problemas son nacionales, otros son locales, otros son globales. Pero están todos relacionados. Están relacionados con la aritmética, y la aritmética no es muy difícil. Lo que espero hacer aquí es convencerles de que la limitación más grave de la especie humana es nuestra incapacidad para entender la función exponencial.

Y me dirán, "Bien, ¿y qué es la función exponencial?"

Es la función matemática que escribiría uno para describir algo que creciese a ritmo continuo, por ejemplo, algo que crezca un cinco por ciento cada año: usas la función exponencial para averiguar cómo de grande se hace esa cantidad que crece año tras año. Hablamos aquí de una situación en la que el tiempo necesario para que la cantidad aumente en un fracción fija es constante. En un cinco por ciento anual, el cinco por ciento es una fracción fija, y el "por año" es un período de tiempo fijo. De eso vamos a hablar, del crecimiento continuo y sostenido.

Bien, si el crecer un cinco por ciento lleva un tiempo fijo determinado, se sigue que llevará un tiempo fijo más largo crecer un cien por ciento. Este tiempo más largo se llama el tiempo de duplicación. Tenemos que saber cómo se calcula el tiempo de duplicación, y es fácil: basta con tomar el número 70, dividirlo por el porcentaje de crecimiento por unidad de tiempo, y eso nos da el tiempo de duplicación. Así, por ejemplo, para un cinco por ciento anual, dividimos 70 para cinco, y encontramos que esa cantidad creciente duplicaría su tamaño cada catorce años. Bien, podrán preguntar de dónde viene ese setenta: es aproximadamente cien multiplicado por el logaritmo natural de dos (= 69.3). Si quieres calcular el tiempo de triplicación, usarías el logaritmo natural de tres. Así que es todo muy lógico. Pero no hace falta acordarse de donde viene, basta con recordar el 70.

Querría que todo el mundo hiciese este cálculo mental cada vez que vemos una tasa de crecimiento porcentual de cualquier cosa, en las noticias. Por ejemplo, si ves que una cosa ha estado creciendo a un ritmo de un siete por ciento anual, ni parpadearías—pero cuando ves un titular diciendo que el crimen se ha duplicado en una década, dices "¡hey,  dios mío, qué está pasando!" ¿Que qué está pasando? Un crecimiento de un siete por ciento anual. Divide el setenta para siete: el tiempo de duplicación es de diez años. Pero fijaos que si vamos a escribir un titular nunca escribimos que algo crece el siete por ciento anual. Porque la mayoría de la gente no sabe qué significa realmente.

¿Sabéis lo que significa realmente un siete por ciento? Tomemos otro ejemplo de Colorado: el precio de un abono diario de la estación de esquí de Vail lleva creciendo cerca de un siete por ciento anual desde que abrió Vail en 1963—y entonces se pagaban cinco dólares, por un abono de remontes para todo el día. Bien, ¿cuál es el tiempo de duplicación de un crecimiento del siete por ciento? Diez años. ¿Y cuál era el precio diez años más tarde, en 1973? Diez dólares. ¿Diez años más tarde, en 1983? Veinte dólares. Diez años más tarde, en 1993, cuarenta dólares. ¿Y qué podemos esperar? ¿Puede continuar esto? Ochenta dólares en 2003, 160 dólares en 2013, 320 dólares en 2023. Pues esto es lo que significa un siete por ciento. ¡Y la mayoría de la gente no tiene ni idea!

Vamos a mirar el gráfico genérico de algo que esté creciendo a ritmo continuo:

graph of steady growth

Después de un tiempo de duplicación, la cantidad resultante es dos veces la original, después de dos tiempos de duplicación ha subido a cuatro veces su tamaño original. Luego sube a ocho, dieciséis, treinta y dos, sesenta y cuatro, ciento veintiocho, doscientos cincuenta y seis, quinientos doce... En sólo diez tiempos de duplicación, es mil veces mayor que cuando empezó; puede verse que si intentásemos dibujar esta gráfica en un papel de gráficas normal, atravesaría el techo directamente. Ahora déjenme que les ponga un ejemplo de los enormes números que se obtienen con sólo un número limitado de duplicaciones.

Dice la leyenda que el juego del ajedrez lo inventó un matemático que trabajaba para un rey. Al rey le complació mucho, y le dijo, "Quiero recompensarte", y el matemático dijo: "Mis necesidades son modestas. Por favor, toma mi nuevo tablero de ajedrez, y en el primer cuadrado coloca un grano de trigo. En el siguiente cuadrado dobla el número y pon dos. En el siguiente dobla el número y pon cuatro. Sólo sigue doblando hasta que llegues al último cuadrado—y ese será un pago adecuado.

Granos de trigo en un tablero de ajedrez:

Cuadrado número   
      Granos en el cuadrado
Número total de granos
en el tablero

1
1
1
2
2
3
3
4
7
4
8
15
5
16
31
6
32
63


64
       263
    264-1

Podemos adivinar que el rey pensó "¡Qué hombre tan necio! ¡Yo estaba dispuesto a darle una auténtica recompensa, y sólo me pide unos pocos granos de trigo!" Veamos qué pasa con esto. Sabemos que hay ocho granos en el cuarto cuadrado. Este número ocho me sale de multiplicar tres doses: dos veces dos veces dos. Es un dos menos que el número del cuadrado. Bien, pues eso se sigue en cada caso, de modo que en el último cuadrado obtengo el número de granos multiplicando sesenta y tres doses juntos. Ahora miremos cómo se forma el total: en el primer cuadrado tenemos un total de uno, con el segundo cuadrado tenemos un total de tres, en el tercero pongo cuantro granos, y ahora el total es siete. Siete es un grano menos que ocho, que es tres doses multiplicados juntos; quince es un grano menos que cuatro doses multiplicados uno por otro. Bien, eso continúa así, de modo que cuando acabamos el número total de granos es el que obtengo multiplicando 64 doses uno por otro, y pregunto, ¿cuánto trigo es eso? Vamos, ¿sería un buen montón, aquí en el estudio? ¿Llenaría el edificio? ¿Cubriría el condado con una profundidad de dos metros? ¿De cuánto trigo estamos hablando? La respuesta es que es más o menos cuatrocientas veces la cosecha mundial de trigo de 1990. Y eso podría ser más trigo del que se ha cosechado en toda la historia del mundo. Diréis, ¿cómo llegamos a un número tan grande? Muy fácil, empezamos con un grano pero dejamos que el número creciese constantemente duplicándose tan sólo sesenta y tres veces.

Hay otra cosa que es muy importante. ¡El crecimiento que se da en cualquier tiempo de duplicación es más grande que la totalidad de TODO el crecimiento anterior! Por ejemplo cuando ponemos ocho granos en el cuarto cuadrado, el ocho es más grande que los siete que ya estaban allí. Cuando ponemos 32 granos en el sexto cuadro, el 32 es mayor que los 31 que estaban allí antes. Cada vez que la cantidad creciente se duplica, coge más de lo que se ha empleado para todo el crecimiento anterior.

Ahora, vamos a traducir eso a términos de la crisis energética. Un anuncio del año 1985 hacía esta pregunta, "¿Podrían los Estados Unidos de América quedarse sin electricidad?  Estados Unidos depende de la electricidad. Nuestras necesidades de electricidad de hecho se duplican cada diez o doce años". Eso es un reflejo exacto de una historia muy larga de crecimiento continuado de la industria eléctrica en este país, que crece alrededor de un siete por ciento anual, es decir, que se duplica cada diez años. Bien, pues, ¿se esperaba acaso que esa historia de crecimiento sostenido siguiera sin más para siempre? Por suerte se detuvo. No porque nadie entendiese la aritmética del asunto, se paró por otras razones, pero qué pasaría si, supongamos, hubiese seguido el crecimiento? Entonces veríamos aquí lo que acabamos de ver en el tablero de ajedrez. En los diez años que siguieron a la aparición de este anuncio, en esa década, la cantidad de energía eléctrica que habríamos consumido en este país habría sido mayor que la suma de toda la energía eléctrica producida en toda la historia de crecimiento continuado de esa industria en este país.

¿Os dais cuenta de que algo tan perfectamente aceptable como un crecimiento del 7% anual podría dar lugar a una consecuencia tan increíble? Que en sólo diez años consumiríamos más que el total de todo lo que se había consumido en toda la historia anterior. Bien, pues eso es exactamente a lo que se refería el presidente Carter en su famoso discurso sobre la energía (18 de abril de 1977). Una de las aseveraciones decía, "en cada una de esas décadas (los años 50 y los años 60) se consumió más petróleo que en el conjunto de la historia previa de la humanidad". Ya de por sí eso es una afirmación pasmosa. Ahora entendéis por qué. El precio nos estaba diciendo una simple consecuencia de la aritmética de un crecimiento del siete por ciento anual del consumo mundial de petróleo, y eso fue la cifra histórica hasta los años setenta.

Ahora, hay otra hermosa consecuencia de esta aritmética. Si cogéis un periodo de tiempo de setenta años, y observáis que es más o menos la duración de una vida humana, entonces cualquier crecimiento porcentual continuado de modo constante durante setenta años nos da un aumento global de un factor— esto es muy fácil de calcular:

Crecimiento constante durante 70 años (una vida humana):

Ratio de crecimiento anual            Factor
1%
2=2
2%
2x2=4
3%
2x2x2=8
4%
2x2x2x2=16
5%
2x2x2x2x2=32
6%
2x2x2x2x2x2=64
7%
2x2x2x2x2x2x2x2=128


Por ejemplo, para un cuatro por ciento anual encontramos el factor multiplicando cuatro doses, nos da un factor de dieciséis.
Bien; hace unos pocos años, uno de los periódicos de aquí de Boulder hizo una pregunta a los nueve concejales del ayuntamiento de Boulder: "¿Qué tasa de crecimiento anual crees que sería deseable tener en la ciudad en los próximos años?" Los nueve concejales dieron respuestas que estaban entre un uno por ciento por lo bajo—resulta que eso viene a equivaler a la tasa de crecimiento anual de los Estados Unidos, no estamos en crecimiento cero: el número de estadounidenses aumenta en más de tres millones de personas al año. Ningún concejal de Boulder dijo que Boulder debería crecer más despacio de lo que están creciendo los Estados Unidos.




... Continuará.





0 comentarios